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A quadrature of the solution of the first dynamic problem of the linear theory of elasticity in which the deformable body occupies 
a finite volume and is bounded by a piecewise-smooth surface, is obtained. The material of the body is assumed to be homogeneous 
and isotropic. It is proved that the quadrature satisfies a system of equations, as well as the initial and boundary conditions of 
the original problem. © 1998 Elsevier Science Ltd. All rights reserved. 

We will consider the first initial-and-boundary-value problem of the dynamic theory of elasticity 

f f i j . j ( x , t ) +  ~(x,t) = p(li(x,t)  

aij (x, t) = FijpoF.r, q (x,t), Eij (x, t) = {Ui, j (x, t) + Uj, i (x, t)} / 2 

Ui(x, 0 ) = Ui0(x ), Ui(x,0)= UiI(X); Ui(xs, t )  = U?(xs , t )  

(1) 

Here a,y(x, t), eij (x, t), Fijpq are the components of the stress and strain tensors and the tensor of elasticity 
constants, Fi(x, t), Uy(x, t) are the components of the vector of mass force and the displacement vector, 
Ui0(x) Uil(X) is the initial distribution of the displacements and rates of displacements in the body, which 
is bounded by the surface S; l_?'i(x s, t) is the boundary value of the displacement vector and x and t are 
the space coordinates and the actual time. In the case under consideration 

F~i ~ = LSijS p~ + l.t(SipS jq + 8iqS jp ) 

where ~. and ~ are the Lain6 constants. 
We apply a Laplace transformation with respect to time and a multiple Fourier transformation with 

respect to the coordinates. Applying a Laplace transformation to the system of equations (1), we obtain 

* 2 * t~ij.j(x, p) + O~(x, p) = pp U i (x, p) 

O~(x, p) = F/* (x, p) + pp2Uio(X ) +pUil (x) 
* * * * * 

t~ij (x, p) = Fij,,qepq(X, p), e.ij(x, p) = {Ui./(x, p) + Uj.i(x, P)} / 2 (2) 

* 0* Ui (xs,p) = Ui (Xs, p) 

The asterisk denotes the Laplace transform and p is the transformation parameter. 
We will solve boundary-value problem (2) by the Fourier transformation method using potential theory 

and a fundamental solution. We place the body, which has a volume V and a bounded surface S, in a 
larger volume V1 in such a way that the boundary surface S1 has no points in common with the surface 
S. The set of points belonging to 111 and not belonging to Vforms the volume V2 bounded by the surfaces 
S and $1. Since the equation 

G;',j(x, p) = pp2U; (x, p) 

has a fundamental solution (the Kupradze matrix [1]) 

tPrikl. Mat. Mekh. Vol. 62, No. 4, pp. 715-718, 1998. 

665 



666 G. Yu. Yermolenko and S. A. Yushkov 

RkS (x, P) -- ,:,E + 131 "'lxi 

Ot I : ~ 2 l ( 2 l l J . ) - I ;  k 2 --"k? =ppl(~.+2~t)-I for 1 : 1  

~t:(- l ) t (2xpp2)- l;  k~:k~=pp2[t  -t for l=2 

the particular solution of the first equation of (2) can be written in the form 

5 R joi-y,p) , ' y,p)ay (3) 
vl 

Let the function ~/*(y,p) be the same as cDi*(x,p) in V. We obtain 

U~(x,p): 5 Rks(x-y,P)~s(Y,p)dy+ 5 2, * R4# ( x  - y, p)lll# (y, p)dy (4) 
v v2 

Here ~*(y,p)  is the Laplace transform of unknown mass forces distributed in the volume. We define 
them in such a way that the transform Uk*(x,p) satisfies the boundary conditions of problem (2) on the 
surface S. Then in V expression (3) will be the required solution of problem (2). For this purpose, we 
put x on the surface S in (3), multiply (3) by the expression 

(nl (Xs) + n 2 (Xs) + n 3 (Xs))e -ik'xs 

and integrate over S. We obtain 

~ n(xs )e-ixs u°*(Xs ' p)ds = I I n(x s )e-tk'xs R~4(Xs - Y, P)dP~Or, p)dyds + 
S Sv  

+5 5 n(Xs )e-ik"S Rkj (Xs - Y. p)cb~* (y, p)dyds 
sv, 

(5) 

n(xs) = nt(Xs )+ n2(Xs)+ n3(xs) 

2* Here nj (Xs) is the corresponding coordinate of the normal to S. The unknown mass forces ~j (y, p) 
are found from Eq. (5). 

Using the theorem on convolution and the Gauss-Ostrogradskii theorem, from (5) we obtain 

0.* I* ** 2* 2** U k (k,p)=R~(k,p)dpj (k ,p )+R~(k ,p )~ j  (k,p) (6) 

Here 

0"* Uk (k ,p)= 5 n(xs)e-i'Xsu°*(xs,p)ds 
S 

• ~ ' (k,p)= I e - i ' ~ ( Y , p ) d y ,  ~ * * ( k , p ) =  5 e-k"s~*(Y,p)dy  
v v~ 

R~*(k0p,= , [ ~ - i k n + ~ n R ~ ( z , p ) } - i Z d z  . r = l , 2  
Vr n : l  

The regions of integration Vlz and V2z in the last equation are determined by the volumes V, V1, 1/2 
and the equation z = x - y. 

Relations (6) form a system of three equations from which to find the three unknown integral 
tranforms of the mass forces ~j2** (k, p). Since, as we know [1], problem (1) has a unique solution, the 
determinant of system (6) is not identically zero and the system has a unique solution. 

2** Let the matrix Resym(k,p) be the inverse ofRky (k,p), that is, 

2 i R~ (k. p) Resj.,(k. p) = 8k. , 

Then from (6) we have the equation 
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• ~** (it, p) 0.* I* = Rcsjm(k, p)U. (k, p)-  RCSjm(k, p)R.w(k, p ) ~ * ( k  p) 

from which we obtain a formula for U(x, t), the solution of the original problem (1) 

I a+/oo ( 

Ul(x,t) = ~ ~ eW{~ R,j(x-y)[I~j(y,p)+ppUjo(y)+pUjl(y)]dy+ 
2hi a-i- [ v 

o . .  + ~ Ro(x -y ,p  e~t'X(Resjm(k,p)Um (k,p)-  
v2 

- Res j,,,(k, p)R~,* e (k, p)t~*e" (k, p))dk]}dydp (7) 

We will prove that the quadrature (7) is a solution of the original problem (1), that is, that (7) satisfies 
the original system of equations as well as the initial and boundary conditions of problem (1). 

Theorem 1. The quadrature (7) satisfies the equation of motion of the initial-and-boundary-value 
problem (1). 

Proof. We write Eq. (7) in the form 

I a+/** 

I e'v; x,p)ap 
I a-ioo 

Then according to the properties of the Laplace transformation we have 

I a+ / .*  

Of(x, t) = ~ ~ ePt[p2U~ (x, p)- PUto(X)- U n (x)]dp 
2 g l  a - i -  

Using expression (3), for Ut(x, t) from (8) we have 

(8) 

(9) 

! 

Ut(x,t)= ~ I Rb(x-y,t-'OO~(y,'Odydx (10) 
o~ 

Here 

I a+b~* ct+/** 

Zff, l a-i** Z ~ l  a - i -  

We substitute expressions (9) and (10) into the equation of motion of problem (1). Changing to integral 
transforms and using (3), we obtain 

1 a+/ - -  I a+/oo 

I ._2_: I eP'Ko(x-Y,P)~}'(Y,p)dydp+--L': ~ eP'~(x,p)dp =0 (11) 
vi g g t  a-i** 2 g l  a-i** 

Ko(x-y,p) = LxRo(x-Y,p)+pp2R#(x-y,p) 

where Lx is the Lamd operator acting on the variables x. 
Here we have taken into account the relation 

6(x,t) = ppu,0(x)- p% (x)]@ (12) 

In relation (11), according to the property of the fundamental solution, K 0 (x - y,p) is the kernel of 
the identity integral transformation and thus 

,[ Ko(x - y, p)~*(y, p)dy = (bl*(x, p) 
vl 
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Using this relation, (11) becomes an identity, which proves the theorem. 

Theorem 2. The quadrature (7) satisfies the initial conditions of problem (1). 

Proof. We use the properties of the Laplace transformation. Then, from Eq. (8), we have 

÷ T  r 0t(x , t  )=  eP, p2 U t ( x , p ) _  Uto(X) U ). dp (13) 
m a-~* I_ P 

Here  U,*(x,p) is the solution of boundary-value problem (2) and is a known function, that is, formula 
• l -- 

(13) umquely defines Ut(x, t) as a known function. Denote it byf(x,  t). Then by solving Eq. (13) for 
U~(x,p), we obtain a form of the quadrature (7) in which the initial values Ut0(x) and Utl(X) are explicit 

t a + ~ *  

Ut(x,t) = ~'~ f eP'U;(x,p)dp = i f(x,t)(t-x)dx+Uto(X)+ Ut1(x)t (14) 
Z ~I  a-b , .  0 

Putting t = 0 in (14) we obtain one of the initial conditions, and differentiating (14) with respect to 
t and putting t = 0 we obtain a different initial condition for problem (1). 

Theorem 3. The quadrature (7) satisfies the boundary conditions of problem (1). 

Proof. We use relations (8) and (3). Then 

U t (x, p ) =  S i* * R o ( x -  y ) ~  j (y, p)dy 
vI 

In (15) we assume that x is on the surface S. Multiplying Eq. (15) by 

(n, (Xs) + n2 (Xs) + n3 (Xs))e -'~xs 

(15) 

and integrating over S, from Eq. (5) we obtain 

S n(xs)e-ikxs[U~(xs,p)-U~o(Xs,p)] dS = 0 (16) 
s 

Since S was an arbitrary surface, the expression in square brackets vanishes, which proves the theorem. 
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